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A COMPUTERIZED SYMBOLIC INTEGRATION TECHNIQUE FOR
DEVELOPMENT OF TRIANGULAR AND QUADRILATERAL
COMPOSITE SHALLOW-SHELL FINITE ELEMENTS

C. M. Andersen* and Ahmed K. Noor**
Langley Research Center

SUMMARY

Computerized symbolic integration is used in conjunction with group-theoretic tech-
niques to obtain analytic expressions for the stiifness, geometric stiffness, consistent
mass, and consistent load matrices of composite shallow shell structural elements., The
elements are shear flexible and have variable curvature. A stiffness (displacement)
formulation is used with the fundamental unknowns consisting of both the displacement and
rotation components of the reference surface of the shell, Both triangular and quadrilat-
eral elements are developed. The triangular elements have six and ten nodes. The quad-
rilateral elements have four and eight nodes and can have internal degrees of freedom
associated with displacement modes which vanish along the edges of the element (bubble
modes).

The stiffness, geometric stiffness, consistent mass, and consistent load coefficients
are expressed as linear combinations of integrals (over the element domain) whose inte-
grands are products of shape functions and their derivatives. The evaluation of the ele-
mental matrices is thus divided into two separate problems — determination of the coef-
ficients in the linear combination and evaluation of the integrals. The latter problem can
be computationally the more time consuming and the present study focuses on simplifi-
cations and means of reducing the effort involved in this task.

The integrals are performed symbolically by using the symbolic-and-algebraic-
manipulation language MACSYMA. The efficiency of using symbolic integration in the
element development is demonstrated by comparing the number of floating -point arith-
metic operations required in this approach with those required by a commonly used
numerical quadrature technique.

' *Senior Research Associate in Mathematics anEComputer Saérice, College of
William and Mary, Williamsburg, Virginia.

**Research Professor of Engineering, Joint Institute for Acoustics and Flight
Sciences, George Washington University, Hampton, Virginia,



INTRODUCTION

Although considerable literature has been devoted to the analysis of isotropic shells
using doubly curved finite elements, investigations of the finite-element analysis of lami-
nated composite shells are rather limited in extent. The reliable prediction of the re-
sponse of composite shells often requires the use of high-order shear-flexible elements
with the consequent increase in the developmental effort of the elemental matrices (the
stiffness, geometric stiffness, and mass matrices).

In most of the published work, numerical integration was used for the evaluation of
the element stiffness matrices. Although numerical integration is both simple and adapt-
able to computer programing, it can become computationally very expensive, particularly
for higher order elements. This drawback has been recognized and improvements have
been suggested (refs. 1 and 2); however, the difficulty has not been overcome. This raises
the question as to whether an alternative approach such as using analytic (closed form or
symbolic) integration in the element development is computationally more efficient. The
present study addresses this question. More specifically, the objective of this paper is to
demonstrate the computational advantages resulting from the use of computerized sym-
bolic integration in conjunction with group-theoretic techniques (or symmetry transforma-
tions) in the development of triangular and quadrilateral shallow shell elements.

The analytical formulation is based on a form of the shallow-shell theory modified
such that the effects of shear deformation and rotary inertia are included. Indicial nota-
tion is used throughout the development, since it is particularly useful in identifying the
symmetries. The integrals are performed symbolically by using the symbolic-and-
algebraic-manipulation language MACSYMAI1 (refs. 3 and 4), This is done in order to re-
duce the tedium of analysis and to decrease the likelihood of errors. The use of group-
theoretic techniques (or symmetry transformations) results in considerable reduction in
both the amount of analytic computation needed and the size of the programs for numeri-

cal computation,

SYMBOLS
ijke pijk

A" By ,C;JB basic integrals defined in equations (14) to (16)

a®,d’,e"  representations of dihedral groups defined in equations (56), (60), (61), and (69)

IThe MACSYMA system is being developed by the Mathlab group at Massachusetts
Institute of Technology under the support of ARPA (Advanced Research Projects Agency
of the U.S. Department of Defense) through Office of Naval Research Contract
No. N00014-70-A-0362-001.
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[C] 8 by 8 matrix of shell stiffnesses

CapypsCasps extensional and transverse shear stiffnesses of shell, respectively
cgkgyp,c((xkgﬁza extensional and transverse shear stiffnesses of kth layer of shell
Co portion of shell boundary over which tractions are prescribed

Dy gyp bending stiffnesses of shell

E;,Ep elastic moduli in direction of fibers and normal to fibers, respectively
eup permutation symbol

Fapyp stiffness interaction coefficients of shell

ij ij
FapoF a1

ij ij
Fap2:F ap3

functions of coordinates of corner nodes

Gy,1,GrT shear moduli in plane of fibers and normal to plane of fibers, respectively

5230,6331 functions of coordinates of corner nodes of elements
Hy weighting coefficients for numerical quadrature
hy,hi 1 distances from reference (middle) surface to top and bottom surfaces of kth

layer, respectively

[K] element stiffness matrix

KHT stiffness coefficients of shell element



[K] geometric stiffness matrix

-KEI geometric stiffness coefficients of shell element
ka 8 curvatures and twist of shell reference surface
kLB nodal values of ka,B

Ll,Lz,fl,fz,f logarithmic functions defined in equations (33), (38), and (42)

[M] consistent mass matrix
MHI consistent mass coefficients of shell element
J‘AaB prescribed bending stress resultants on shell boundary

mg,mq,my density parameters of shell

Nt shape or interpolation function
J\JaB prescribed extensional (in-plane) stress resultants on shell boundary
J\Jgﬁ relative magnitudes of initial stress resultants (prestress components)

unit outward normal to shell boundary

Ny

{P} consistent load vector

P% consistent load coefficients

Pa,P external load intensities in coordinate directions
p}I,pi nodal values of p, and p



~

9] 8 prescribed transverse shear stress resultants on shell boundary

. s ,Q s
R‘fkﬁ,ng ,R%Jkﬂ coefficients associated with A-integrals

CDm,‘Drzn,CQm,CDZn integers associated with representative A-integrals
by number of shape functions associated with an element

ik ik ik
Sllj ,sgk,sg coefficients associated with B-integrals

Q?,Q?,Q?,Q? integers associated with representative B-integrals

s ratio, Up/Uy
s a quantity defined in equation (39)
T kinetic energy of shell
T transpose symbol
Tilj,T:lzj,ng,T;llj coefficients associated with C-integrals
BEGEOEY
integers associated with representative C-integrals
g8
t ratio, Ug/Ujy
t a quantity defined in equation (39)
8) strain energy of shell
U° strain energy due to prestress

Uj1,U9,U3 functions of nodal coordinates



Uy, W displacement components in coordinate directions (see fig. 1)

Va1:Va2:Vas
= = = linear functions of coordinates of corner nodes
Vo 1,Vho, Ve
alYa2 Vol
w work done by external forces
Xq,X3 orthogonal coordinate system (see fig. 1)
x& values of x, for corner nodes
A in-plane load parameter
il number of numerical quadrature points

Poisson's ratio measuring strain in T direction due to uniaxial normal

LT
stress in the L direction
Sa local dimensionless coordinates in the shell domain
M(ug,w, 9 q) functional defined in equation (1)
pgk) density of kth layer of shell
o,T permutations
P rotation components
{z,l/} nodal displacement vector
‘P‘jy nodal displacement parameters
Y/ shell domain
Q(e) shell element domain



w circular frequency of vibration of shell
O = 98/0Xy

The range of the different indices is as follows:
Lower case Latin indices: 1 —-r
Upper case Latin indices: 1 —+ 5
Greek indices: 1,2

The finite-element models are designated:

SQr stiffness formulation, quadrilateral element, r shape functions per funda-
mental unknown

STr stiffness formulation, triangular element, r shape functions per fundamental
unknown

The groups are designated:

D3 six-element dihedral group

D4 eight-element dihedral group

FINITE-ELEMENT FORMULATION

The analytical formulation is based on a form of the shallow-shell theory with the
effects of shear deformation, anisotropic material behavior, rotary inertia, and bending-
extensional coupling included. (See ref. 5.) The prebuckling state of the shell is assumed
to be a momentless state. A displacement (stiffness) formulation is used in which the
fundamental unknowns (dependent variables) consist of five generalized displacements —
the two tangential displacement components uq, the normal displacement w, and the two
rotation components ¢. (See fig. 1.) Throughout this paper the range of the Greek in-
dices is 1,2 and it is implied that any index Greek or Latin, which appears twice in the
same term is to be summed over.



X3
p,w
) #
P9y Ug
Pys> Y4
X
2 -~
Xy /G
(a) Displacements and loads. (b) Rotations.

Figure 1.- Shell element and sign convention.

Governing Functional of Shell

The fundamental unknowns are assumed to vary sinusoidally with angular velocity
w (the circular frequency of vibration of the shell). The functional used in the develop-
ment of the elemental matrices is given (see ref. 6) by

M(ug,Ww,pq) = U+ U° -W - T (1)

where U and U? are the strain energies due to deformation and prestress, W is the
potential energy of external forces, and T is the kinetic energy of the shell.

The expressions of U, u°, W, and T in terms of the generalized displacements

are
U= % S‘Q {Cag-ypliaauﬁ Iyup + 2ka5 9yup W + kaB k-yp (W)2:| + ZFaByp[aauB 8y¢p

+kap 8y$p W] + Dapyp 2adp dybp + Casps[daw oW + 200 ogwW + ¢>a¢3]} (2
Ul = %EQ Wgﬁ dgw 9gw dQ (3)

W = S;Z (pguy + pw) dQ + §CG<W afla + JMaB‘f’a + éﬁW) ng de (4)



and

T = 223 S‘Q [mo(uaua + (W)z) + 2myugbqy + m2¢a¢a:l a (5)

where Cgpyp, Dapgyp, and Fypyp are the extensional, bending, and stiffness interac-
tion coefficients of the shell; Cy383 are the transverse shear stiffnesses of the shell
(see appendix A); kyg are the curvature components and twist of the shell surface;
MJU%B are the initial stress resultants (prestress field), M is the in-plane load param-
eter; py and p are the external load components in the coordinate directions x5 and
X3, respectively; mg, mjp, and mg are density parameters of the shell defined in
appendix A; J\JaB, JMQB, and QB are prescribed extensional, bending, and transverse
shear stress resultants, respectively; € is the shell domain; cs is the portion of the
boundary over which tractions are prescribed; and ng is the unit outward normal to the
boundary.

Finite-Element Discretization
The shell domain £ is partitioned into triangular or quadrilateral subdomains
Q(e), With each Q(e) is associated a finite element for which the fundamental unknowns
are approximated by expressions of the form

Ug = Ni‘lf;l:x W

w = Niwé (6)

~ Niyl
g =N 3+«
J

where N! are the shape (or interpolation) functions; tp}I (J =1~ 5) are displacement
parameters; r equals the number of shape functions in the approximation; and a re-
peated lower case Latin index denotes summation over the range 1 — r, Each set of dis-
placement parameters wil,llzglz, e e e wi5 is either associated with a node of the element or
with a bubble function.

The curvatures kgg and the external load components p, and p are approxi-
mated by the same shape functions used in approximating the generalized displacements,
that is,



_ oaipd )
kaB_leaB

Pg = Nip}x (7)

p=Nipl

where k(iw, pia, and pi are the nodal values of kg3, Py, and p, respectively. To
simplify the development of the elemental matrices, it is assumed in subsequent sections
that the shell stiffnesses C's, F's, and D's as well as the density parameters my,
my, mg, and the initial stress resultants are constants within each element. Equa-

tions (2) to (5) can be expressed in terms of the shape functions NI and the nodal param-
eters ll/}]- as follows (for simplicity, the line integrals in eq. (r) are assumed to make no
contribution):

=1 Lo, NI yhyi n R S W
U=3 Z gﬂ(e) {Caﬁyp <8aN oy N UL, + 2k g 0yN' NINTy 0%
Elements

+ Kiyg kpp NNINONYLUL) + F g (oot oy whth g+ K 0N NINTYA 5 )

+ Dy gyp 8aN' oyN) .9 a,u]p+3 + Cy3p83 <aaN1 2N Yayh + 2Nt 8pNY Y43 Y3

+ NiNJyL o 1&3.3+3)} dQ (8)
0 _ A' 0 » . . j
U® = 5 Z S‘Q(e) N sy N! BBN] lp%‘l/g. ds? (9)
Elements
W = Z S\ (e) NiNj<p'}x¢/];1 + pill/];,’) de (10)
Elements §

2 . . . . . . . . . .
v ) o Mok vyud) s amavhiod s mavh v, 00

3+a " 3+
Elements

10



The governing equations for each element are obtained by applying the stationary
conditions for the functional in equation (1). This leads to the following set of equations:

1j  =ij

where KIJ arel }:he st1ffness coefficients; EiJ are the geometric stiffness (prestress)
coefficients; Mjpy and PI are consistent mass and load coefficients; and A is an in-
plane loading parameter used to determine the buckling load or the magnitude of the pre-
stress. The formulas for the aforementioned stiffness, mass and load coefficients are
given in appendix B. For static stress analysis problems, A = w = 0; and for free vibra-
tion problems, A =0 and Pi =0. The K's, K's, and M's are completely symmetric
under the interchange of one pair of indices for another, each pair of indices consisting of
a superscript and the subscript just beneath it.

To write equation (12) in matrix form, the first superscript-subscript pair of each
of the K's, K's,and M's defines the row number and the second pair defines the col-
umn number., For example, the term KH will be located in the [5(i - 1) + IJth row and
in the [5( - 1) + J]th column of the element stiffness matrix. Similarly, the P's and
Y's can be written in column vector form. Thus, equation (12) becomes

(K] + AR = (P} + w2[M{¥) (13)

Representation of Fundamental Unknowns

Two triangular and four quadrilateral conforming elements were developed for the
present study. The nodes of these elements are shown in figure 2, and their characteris-
tics are summarized in table I, The triangular elements developed have six or ten nodes
and the quadrilateral elements have four or eight nodes. For the two triangular elements
and for two of the quadrilateral elements the range r of the superscripts in equations (6)
and (7) is the number of nodes (that is, 6, 10, 4, or 8). For the two remaining quadrilat-
eral elements, r is one greater than the number of nodes (that is, r =5 or 9). The
additional shape function, which vanishes along the entire element boundary and is not
associated with a node, is usually referred to as a ""bubble function."

Since for each element all five of the fundamental unknowns are approximated by the
same set of shape functions (see eq. (6)), the number of degrees of freedom per element is
5r and thus for the elements developed the element stiffness matrices [K] of equation (13)
range in size from 20 by 20 (for SQ4) to 50 by 50 (for ST10).

11



2 4 9
(2) SQ4 and SQ5. (o) ST6.

5
(¢) SQ8 and SQ9.

Figure 2.- The finite elements used in the present study.

The nodal parameters tp]i: introduced in equation (6) were selected to be values of
the fundamental unknowns at the different nodes, and the approximations to the fundamental
unknowns are continuous across the element boundaries.

COMPUTATION OF ELEMENT CHARACTERISTICS
Each component of the arrays KH, Ki}, Mi}, and P% is a linear combination of
integrals whose integrands are products of shape functions and their derivatives. (See
appendix B.) If a constant shape function NO = 1 is introduced, then the integrals in
appendix B can be reduced to linear combinations of integrals of the following three types:

Alike =§“ © NiNINENE a9 (i,j, k ¢=0~r) (14)
Q
Bk = ©) NiINI 8o NK d0 (i,j=0-r; k=1-71) (15)
Q

12



chl- yﬂ(e) s agNl d (,j=1~1) (16)

The evaluation of the stiffness, mass, and load coefficients can be divided into two
separate problems: (a)the determination of the coefficients in the linear combinations
and (b) the evaluation of the A-, B-, and C-integrals. Since problem (a) is relatively
simple, the present study focuses on simplifications and means of reducing the effort in-
volved in problem (b).

EVALUATION OF INTEGRALS

For the evaluation of the A-, B-, and C-integrals (eqgs. (14) to (16)), it is convenient
to introduce a dimensionless local coordinate system £, (@ = 1,2) in terms of which the
limits of integration are simply expressed. For triangular and quadrilateral elements,
the &, are chosen to be the area and quadrilateral coordinates, respectively. (See
ref. 7 and fig. 3.) In the present study, the shape functions are simply polynomials in £q
(see appendix C) and the Cartesian coordinates xn are linear or bilinear functions of

Eq.

@
(?/ ‘gz\:o
/ l

‘g’l =-1.0 | @ -
l EEEN
El =0 \\ gz =-1.0
£,=1.0
(a) Quadrilateral. (b) Triangular.

Figure 3.- Local coordinate systems for quadrilateral and triangular finite elements.
The relations between the Cartesian and local dimensionless coordinates are

o - 9x1,%9)

déq d¢ (17)
8(‘5 1,2) 172
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and

-1
o _%%y o _|2x1x9) °Xg 4
0Xy Xy 0&y 8(51’52) €ap €vp 5%, _85.}, (18)

where a(xl,xz)/a (g 1,£9) is the Jacobian determinant and 8§y/8xa is the inverse of the
Jacobian matrix. See ref. 8 for more explicit expressions for a(xl,xg)/a(g 1,3;2) and
8/8x, for selected cases.

Through the use of equations (17) and (18), the A-, B-, and C-integrals can be ex-
pressed in terms of the local coordinates £, as

At _ Nininkn? 2&LX2) 19
S‘Q(e) ey 12 "
- . . X k
Pk iNi B aN®
BLIX - g ey gﬂ(e) NiN %, 3t g, déy (20)
cli . § ot ol 2%y Ep[a0xy,x9)] dgq dg (21)
aB = €ay €Bp ek eHV.Q(e) dEx agugaag,, 8(&3_,52)_] 1952

The A-integrals are completely symmetric under interchange of indices, and the
B- and C-integrals satisfy the following symmetry relations:

. . K
B}x]k=BJal

(22)
1] i
C01.3=CBO1

Thus, the number of numerically distinct A-, B-, and C-integrals in equations (19) to (21)
is (r+4)!/(4ir!), %(r+1)(r+2)(2r), and %(2r)(2r+1), respectively. (See ref. 9 and table II.)

When the integrands of equations (19) to (21) are polynomials in £, the analytic
(symbolic) evaluation of the corresponding integrals is a straightforward task. Examina -
tion of equations (19) and (20) reveals that this is the case for all the A- and B-integrals.
The integrands of the C-integrals (eq. (21)) are polynomials in £, only when the Jaco-

14




bian determinant a(xl,xz)/a (gl,gz) is independent of £, and this is the case for tri-
angular and parallelogram elements. For a general quadrilateral element, the Jacobian
determinant is linear in &4, and consequently, the C-integrals are complicated functions
of the nodal coordinates and involve logarithms.

The forms of the analytic expressions for the A-, B-, and C-integrals for both the
triangular and quadrilateral elements are given subsequently,

Triangular Elements

For triangular finite elements, the A-, B-, and C-integrals may be expressed as

ijke _ _ijke

Va1
Blk = [sifk ik (24)
v
a2
oh ol

s

. s
ij -1 2|"p1

Cyg Ul[val Vag] (25)
ij ij

Ty T4||Vp2

where the R's, S's,and T's are rational numbers (independent of the nodal coordi-
nates) and are discussed later; the V's are functions of the nodal coordinates given by

Va1 = eap (<} - <3)

(26)
= 2 3
Va2 = e (XB - XB)
The quantity Uj is the area of the triangular element and is given by
Up = % eqp Vo IVBZ (27)

and xé, x%, and x% are the coordinates of the corner nodes numbered as in figure 2(b).

Since the five quantities Uj, Vg1, and Vg9 are functions of the nodal coordi-
nates, they need to be evaluated for each element. On the other hand, the R's, S's, and

15



T's are the same for all triangular elements having the same number of nodes. As will
be demonstrated in subsequent sections, the evaluation of the A-, B-, and C-integrals
using equations (23) to (25) is computationally more efficient than using a numerical quad-
rature technique wherein the integrands have to be evaluated at each of the quadrature
points, multiplied by the weighting coefficients, and then summed.

Quadrilateral Elements

For quadrilateral elements, the A-, B-, and C-integrals may be expressed as

Ui

..k ..kQ .. ..kQ—

ANEL [R‘f ryE! Ry J U2 (28)
Vai

ng=[s?k sy¢ gt |Vas (29)
Va3

[ Li(s,t)
i _ 1 )i ij ij i 1L
Coﬂﬁ‘ﬁ‘; ga60+[c3’a31 Fap2 %ra,83J 2(s,9 (30)

Lo(t,s)

where the R's and S's are rational numbers (independent of the nodal coordinates) and
are discussed later; the U's and V's are functions of the nodal coordinates given by

1 .2 .3 .4
- _eas<xﬁ'?{ﬁ+xﬁ‘xﬁ>
al = 2
2 4
- ~ eaB<—X[]§ + XB +X% - XB) (31)
a2~ 4 ’

v cap(xh B+ xf e x)
3=

16



and

U = eqp Va2Vs3)

- M ———

Ug = eqp Va3Vi1 (32)

U3 = eqp Va1Vg3)

and x(lx, x%, xg, and xg are the coordinates of the corner nodes numbered as in fig-

ure 2(a). The quantity Ujp is equal to one-fourth the area of the element.

The I's in equation (30) are complicated rational functions of s, t, andthe V's,

and the L's are logarithmic functions given by

7
1 1-(s+ t)2
Li(s,t) = L (t,s) = 3 log | ————
1-(s - t)2
(33)
2 _ .2
L2(S,t) = % log (]'-*-—t)z_-_s_
(1-t)%-s2 J
where s and t are dimensionless parameters given by
8]
S = ___2}
U1
(34)
L]
Uy

The relations between the Cartesian coordinates x, and the local coordinates £, in-
volve the U's and V's of equations (31) and (32). They are

1,42 L o3 . 4
X + X + X + X
Xa = Vg1816g + Vaaéy + Vagég + =4 * & o (35)

17



and

dbe1xa) Uy - Ugéy - Ugéy (36)
3(£1,€2)

The numerical evaluation of the A-integrals and B-integrals by using equations (28)
and (29) is a straightforward task. However, since the TF's in equation (30) typically
become infinite in the limit as s and/or t goes to zero, and since elements with small
or vanishing s or t must often be evaluated, equation (30) is not a satisfactory form to
use for the numerical evaluation of the C-integrals.

For the C-integrals used in this study, the difficulties are overcome by casting

equation (30) in the form

f’ _\
Ff1(s,t)
Cap = 'ﬁl; T a0 * [5231 Fase 5353} La(s,t) (37)
Lo(t,s)
L B W,

where
_ _ ~ - . N
Tq(s,0) = Tqlt,s) = (Et)'s[Ll(s,t) + 28T + (l?’i - 282 - 2t2>(§t)3}
(38)
Tols,t) = (f)‘5|:L2(s,t) ot - @. + ZSZ)E‘ﬂ
/
and
~ s e t
s = t = (39)
1- t2 1- s2

Since only convex quadrilaterals (those for which the Jacobian (36) does not vanish
anywhere within the domain of the elements) are of interest, equation (37) needs to be
evaluated only for r and s satisfying the condition

s+ Itl <1 (40)

18



(Elements with |s| + {t| = 1 have three of their four vertexes lying on a straight line;
that is, they have degenerated into triangles.) The %F's are free of singularities except
at s=x1 and t =1, and their numerical evaluation is straightforward. Elements with
s or t equalor nearly equal to one are not of interest anyway.

Even though the functions Lj and Lg are free of singularities within the region
specified by equation (40), they must be evaluated with care. Equation (38) is used di-
rectly for numerical evaluation only if neither s nor t is small; otherwise, Taylor
series expansions are used. These series expansions were derived by using MACSYMA
and are part of the computer program listed in reference 11,

Although the A -, B-, and C-integrals for any quadrilateral element can be numeri-
cally evaluated by using equations (28), (29), and (37), simplified forms for these integrals
should be used to improve computational efficiency whenever the element is a trapezoid or

a parallelogram,

Trapezoidal Elements

Trapezoidal elements are characterized by the vanishing of t = U3/U1 or else
s = Ug/Uj. Inthe case t =0, equation (37) reduces to

C.:JJ;B = 611[6230 + 6331 E(s)j! (41)

where the §'s are functions of s and the V's, and

T.(s) = s-5 1_’ﬁ> 925 - 243
(s) =s [log <1 — 2s 5 S (42)
Similar expressions hold for the case s = 0. A Taylor series expansion is used to eval-
uate the function L when its argument is small,

Parallelogram Elements

Parellelogram elements (and thus rectangular elements) are characterized by the
vanishing of both s and t. The formulas for the A-, B-, and C-integrals over quadri-
lateral elements (eqs. (28) to (30)) reduce in the parallelogram case to
ijke ijke

AV = r* Uy (43)
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Va2
Bk - [s‘zlk sgk] (44)

ij -1
Cas Ul[vaz Va3 (45)

where the R's, S's, and T's are rational numbers, These expressions, like those for
the triangular elements (eqs. (23) to (25)), are entirely free of logarithms,

GROUP-THEORETIC TECHNIQUES

The evaluation of the A-, B-, and C-integrals can be divided into two distinct phases:
(1) obtaining analytic (or algebraic) expressions for the integrals using the symbolic-and-
algebraic-manipulation language MACSYMA and (2) numerically evaluating the resulting
expressions. These two phases will henceforth be referred to as the symbolic and numer-
ical phases, respectively.

Because of the way in which the integrals ng depend on the values of the Greek

index @ (see eq. (20)), separate symbolic integrations for fixed i,j,k are not required
for Bi]k and BlzJ . Similarly, for given 1i,j only one symbolic integration is required

for the set of integrals CllJl, CllJZ’ Clzll, and C12]2 Thus, by this consideration and by
taking into account the symmetries of the Latin indices in equations (19), (20), and (21),

the number of symbolic integrations required to determine the coefficients in the expres-
sions (eqs. (23) to (25) and eqgs. (28), (29), (37), (41), and (45)) for the A-, B-, and C-
integrals would be (r+4)!/(4!r!), %(r+1)(r+2)(r), and -é-(r)(r+1), respectively, (The G's
in eq. (41) and the T's in eq. (45) do not require separate symbolic integrations since
they can be determined from the T's of eq. (37)). Thus, for the six elements developed
in this study, a total of 4647 symbolic integrations would be required. The evaluation of
such a large number of integrals symbolically, some of which are very complicated, seems
discouraging even with the aid of a computer, and it is highly desirable to reduce this num-
ber. This reduction can be accomplished for the triangular and quadrilateral elements
studied herein by taking advantage of the similarities in algebraic form among the various
integrals, viz, by employing the theory of group transformations (refs. 9 and 10).
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Basic Idea of Group-Theoretic Techniques

The essential idea of the group-theoretic techniques employed herein is that a rela-
tively small number of the A-, B-, and C-integrals are selected as "'representative" inte-
grals for which symbolic calculations are performed directly. Each of the other A-, B-,
and C-integrals is related to one of these representative integrals by symmetry consider-
ations. Therefore, the symbolic phase of computation reduces to obtaining analytic ex-
pressions for just the representative integrals. The numbers of representative integrals
required for each of the various elements considered in the present study is given in
table II. The total number of representative integrals is 886; thus, the group-theoretic
techniques reduce the number of symbolic calculations to less than one-fifth of what it
would otherwise have been.

In this study, group transformations are applied by using two different (but mathe-
matically equivalent) procedures.- The first procedure is used for the sets of integrals
that can be expressed as linear combinations (with numerical coefficients) of a small num-
ber of functions of the nodal coordinates. In this case the output from the symbolic phase
of computation consists of arrays of integers obtained from the symbolic integration of
representative integrals, In the numerical phase the coefficients for all the integrals re-
lated to these representative integrals are numerically evaluated and stored for repeated
subsequent use. As a result, the evaluation of these integrals is very fast and only a rel-
atively small amount of data needs to be transferred from the symbolic phase of computa-
tion to the numerical phase. This procedure was found to be the more efficient one for
evaluating the A- and B-integrals (for all elements studied herein) and the C-integrals for
the triangular and parallelogram elements. However, it would be very cumbersome to try
to apply this procedure to the remaining C-integrals.

For evaluating the C-integrals for nonparallelogram quadrilateral elements, the sec-
ond procedure involving group transformations was used. Since these integrals have more
complicated forms, the output from the symbolic phase of computation consisted of alge-
braic expressions for the representative integrals rather than just arrays of coefficients.
These algebraic expressions are used for the numerical evaluation of the nonrepresenta-
tive as well as of the representative C-integrals. This is done by applying suitable group
transformations to the variables contained in these expressions before evaluating them.

By using the same algebraic expressions for several related integrals, fewer symbolic
calculations are performed and computer memory requirements for the numerical phase

of computation are reduced,

The second procedure could have been applied to all the integrals but with some loss
in the computational efficiency. The difference in the way the two procedures would apply
to the A- and B-integrals is that by using the first procedure, the coefficients (the R's
and S's) are transformed (and this needs to be done only once), and by using the second
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procedure the functions of the nodal coordinates (the U's and V's) would be transformed
(and this would have to be done for each element).

Before discussing the application of these two procedures in detail, the concept of
dihedral groups is briefly reviewed.

Dihedral Groups

For triangular and quadrilateral elements the symmetry groups which serve to re-
late the various A-, B-, and C-integrals to their representative integrals belong to an in-
finite family of groups called dihedral groups. (See ref. 10.) For triangular elements
the relevant group is the six-element dihedral group (denoted by D3), and for quadrila-
teral elements it is the eight-element dihedral group (denoted by <4). The group Dg
is the symmetry group of an equilateral triangle, and the group D4 is the symmetry
group of a square. These groups are relevant because any triangular element can appear
as an equilateral triangle when viewed in an appropriate local coordinate system, and any
quadrilateral element appears as a square as viewed in the quadrilateral coordinate sys-

tem £, of figure 3(a).

To each element in the symmetry group there corresponds a linear transformation
on the local coordinate system which maps the element domain onto itself. Let such a

transformation be symbolized by

o =& = 5'01(53) (46)
This transformation induces a transformation on any function f(gl,gz) in the sense that

fE1,82) ~ I'(€1,42) (47
where

(81,82) = 1(51,23) (48)

In particular, the set of shape functions Ni = Ni (§1,89), i=1~—r, has the property that

]

each transformed shape function (Ni) is identical to one of the untransformed functions
Ni. In fact

(nD)' = n7() (49)
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where 7 is a permutation on the set of r indices. Since the indices on the shape func-
tions, in effect, form the superscripts on the A's, B's, and C's, the effect of the group
transformations is to induce transformations on these superscripts.

To each element in the symmetry group, there also corresponds a permutation ¢
on the coordinates of the corner nodes

xi, ~ xZ(0)

i =3 for triangular elements;
(50)

i =4 quadrilateral elements

These permutations induce linear transformations on various sets of functions of the xl,
Examples of such sets are Ujy; Ug and Ug; Vi, Ve and Vg r oand s; Ly;
Lo and Lg; Lj; Lg and Lg; ete. Thus, for example,

Us(xhy) ~ U1(xGW) = avs(xh) (51)
and
Ug(xh)|  [Ua(xG)  [Ua(xh)
N | =a (52)
Us(xh)|  |us(xI® Us(xk)

where a is+lor -land d is a 2 by 2 matrix, Both a and d depend on the particu-
lar group transformation. In this way certain transformations on the superscripts of the
Aijkﬂ, ng, and CgB are related to linear transformations on the variables contained
in the formulas for these integrals.

First Procedure Based on Group Transformations

As mentioned previously, group transformations are employed in two different ways,
The first procedure based on group transformations is used to evaluate the R's, S's,
and T's in equations (23) to (25), (28) to (29), and (43) to (45).

For triangular elements the formulas used to evaluate these coefficients are

s _1
R - (RF) 2 (53)
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[sijk sijk}=(93m)'1[31E Qzﬁ} df (54)

1 9
and

T T4 | Tgii g

6T (@) ~ (55)

1

T3] TE CJ3 T3

where the d's are matrices which represent group transformations, The d's are
0 - -1 1
¢ = a =
1 - -1 0
1 0 6 -1 01
5 _ -
=1y . =10 1 )

In equations (53) to (565) T denotes transpose, and the R's, 8's, and Y's are
integers obtained from the symbolic integration of representative integrals.

given by

(56)

For quadrilateral elements the formulas used to evaluate the R's, S's, and T's

are

‘s -1
R = (2F) *f

< cer -1
RE R @p ey ay] e (50

. . —7 —\-1 — —
[s‘zlk sllk] = an(sf{‘) [szn an] an (58)
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[ o), [T oF
o =ER @ (59)
Tg TE gP ogf

where the a's and d's represent group transformations and are given by

al= a2=33= 3%4=35=_36=37T=_38=1 (60)
1 0 [0 1] R
al = a2 = N | gt = g2
0 1 -1 0
~ _ _ (61)
1 0 [0 -1
&b = b = a7 = b a8 = _gb
_O —1_ _-1 0_
~/

and the R's, 8's,and 7J's are again integers obtained from the symbolic integration
of representative integrals.

In equations (53) to (55) and (57) to (59) the superscripts m, m, m, n, 1, and n
in the right-hand members must be understood as integer-valued functions of the super-
scripts in the corresponding left-hand members, that is

m = m(i,j,k,0) m = m(i,j,k) m = m(i,j)
n = n(i,j,k, ¢) n = 1(i,j, k) n = n(i,j)

The superscripts m, ™, and m indicate which representative integral is being refer-
enced, and the superscripts n, 7, and # indicate which group transformation is being
applied. The dependence of the superscripts m, ™, m, n, n,and n on the super-
scripts i, j, k,and (£ is given by a set of integer-valued input arrays generated by
separate computer programs. These arrays are given in reference 11,

Whenever the left-hand member of one of the equations (53) to (55) or (57) to (59) is
one of the representative integrals, then the superscript n or I or B (as the case
may be) equals one which indicates the identity group transformation. Thus for triangular
elements the coefficients for the representative A-; B-, and C-integrals are :ern/ch;
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S?/Q%ﬁ and Q_zﬁ/ggﬁ; and gi—n/g‘%—n, SER g’rsn, ggﬂ/g‘gm, and %j‘flTl CJ?; respectively;
and similarly for quadrilateral elements. The arrays of R-, S-, and U -values are given

in reference 11,

First Procedure Illustrated

To illustrate the use of this procedure, consider the integral A2111 tor the ST4
element. Since A2111 wag selected as one of the representative integrals, it has n =1,
From the way in which the representative integrals have been ordered, A2111 g the
eighth representative A-integral, and thus it has m = 8. Because A2111 g4 represen-
tative integral, it is one of the integrals to be symbolically integrated. The result of this

integration is

Uy - 2 U
a2111_ -U1 7Usz+3 3 63)

and thus, by comparing equations (57) and (61) with equation (27), it follows that

Q8 = 8 -
®%= 1 RS = -2
(64)
8 _ P8 -
RS =3 Ry =175

These four values are included in the R-array for the ST4 element assembled during
the symbolic phase of the computation.

Seven other A-integrals for the ST4 element are also characterized by m = 8,
They are A2221, A3222, A3332, A4333, A4443, A4441, and A4111, and their n
values are 5, 4, 6, 2, 8, 3, and 7, respectively. Thus, from equations (52) and (56), it

follows that their coefficients are

R = 00133 Rr§" ! = -0.0267 R = 0.0400
R2221 = 0,0133 R3221 = _0.0267 R3221 = _0,0400
(65)
R3222 = g 0133 r32%2 = _0,0400 R3222 = _0.0267
R‘?.332 = -0.0133 Rg332 = -0,0400 R§332 = 0.0267

(Equations continued on next page)
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Rr4333 = 0,0133 R3333 = 0.0400 R$333 = 0.0267

RI443 = 0.0133 R3443 = 0.0400 R3443 = 0.0267

(65)
r4%441 - 00133 R3*41 = 0.0267 R3*! = -0.0400
R - 0.0133 R4 = 0.0267 r3111 = 0.0400

These results are included in the R-array which is evaluated in the numerical phase of
computation and stored for subsequent use. Then for each finite element processed, the
U's are evaluated by using equation (30) and after this evaluation the set of distinct A-
integrals (that is, the ALk with izjzkz () is numerically evaluated and saved in an
array. Included in this A-array are the eight integrals A2111, A2221, A3222, A3332,
A4333, A4443, A4441, and A4111, whose coefficients are given in equations (65). Fin-
ally, as various A-integrals are needed in the evaluation of the element characteristic
matrices, they are quickly retrieved from the A-array. Because of the permutational
symmetry of the indices, the 32 A-integrals on the following list all depend on the R-
values given in equations (64):

A2111 _ 41211 _ 51121 _ 41112 A1222 _ 52122 _ 42212 _ 42221
A3222 | 22322 _ 42232 _ 2223 22333 _ 23233 _ 43323 _ ,3332
24333 _ ,3433 _ ,3343 _ 3334 A3444 _ 44333 _ 4434 _ 4443
Al444 _ 44144 _ 44414 _ 4441 AG111 _ 41411 _ 1141 _ 1114

In this way there can be as many as 192 A-integrals associated with a single representa-
tive A-integral.

Second Procedure Based on Group Transformations

The second procedure based on group transformations is used for the evaluation of
C-integrals for nonparallelogram quadrilateral elements. Because of the greater com-
plexity of the expressions for these integrals, the output from the symbolic phase of com -
putation consists of FORTRAN-coded formulas for the representative integrals rather
than arrays of integers as in the other cases. These formulas are functions of the vari-
ables Uy, s, t, Li(s,t), La(s,t), Lg(t,s), and the V's. The procedure by which both
a representative C-integral and the integrals related to it by dihedral symmetry can be
evaluated by use of many of the same FORTRAN statements is the following:
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(1) Based on the superscripts i and j, the program looks up the values of
T =m(,j) and n=n(i,j), where m designates the representative integrals and n des-

ignates the group transformation,
(2) The quantities Vg1, Vg9, Va3, s, ft, fg(s,t), and —ﬂg(t,s) undergo the fol-

lowing transformations:

Va1 = Va1 =2V
n
Va2 Voz2 Va2 (66)
- _ = gl gn
n
Vas Voz3 Va3
J
S s S
-\ _l= qn (67)
t th t
Lo(s,t)| |L3(s,b) Lo(s,t)
-] = gl (68)
Lo(t,s)| |Ljt,s) Ly(t,s)
where
-
1 0
eloedoebeel =
0 1
(69)
0 1
02— od=ob o8-
10
S

an e as an S are given in equations an . omputationa 1T 1S muc
dthe a' da da iven i tions (60) and (61). (C tationally, it i h

faster to use eqs. (65) than to reevaluate the logarithmic functions each time s and t
are transformed.) The variables U; and LY(s,t) = fl(sn,tn) are not transformed.
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(3) The FORTRAN code for the mth representative integral is executed by using
these transformed variables in place of the original variables. This technique of using
the same FORTRAN statements to evaluate several symmetry-related integrals signifi-
cantly reduces the program length,

PERFORMANCE EVALUATION AND COMPARISON
WITH NUMERICAL QUADRATURE

In order to assess the computational efficiency of the symbolic integration approach
for developing elemental matrices, a computer program called SYMINSE (ﬁl\_/[bolically
INtegrated Shell Elements) was developed based on this approach, The program generates
the element characteristic arrays (stiffness, geometric stiffness, mass, and load matrices)
for the six elements in table I. A detailed description of SYMINSE program is given in
reference 11.

The CPU times required for the SYMINSE program to generate the element charac-
teristic arrays for 14 different shallow-shell elements and 14 flat-plate elements (with
bending extensional coupling included) are given in table III. Also included in this table
are the field lengths required for these elements. No comparison is given of the CPU
times required for computing the characteristic arrays for these elements via the symbolic
integration approach compared with the numerical quadrature approach. This is because
any such comparison would, by necessity, be influenced by the efficiencies of both pro-
grams and would be dependent on compilers, operating systems, and computer hardware
as well,

Instead a quantitative measure of the efficiency of the symbolic integration approach
is provided by giving a comparison of the number of floating-point multiplications and
additions in a conventional numerical quadrature approach with the number required by
the SYMINSE program,

In the conventional numerical quadrature approach, the element stiffness matrix is

expressed in the form

L
[K] = Qzl Hi(B)L, o[Clg o[Belg 5, (10)

where [By] is the strain-displacement matrix for interpolation models, [C] is the matrix
of shell stiffnesses, Hj are the weighting coefficients for numerical quadrature, p is
the number of quadrature points, and r is the number of shape functions.
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To generate the element stiffness matrix [K], the matrix of shell stiffnesses [C] is
multiplied in turn by each of the weight coefficients Hjy. Because of the symmetry of the
element stiffness matrix, only the upper triangular part of [K] needs to be evaluated. The
individual contributions at each of the quadrature points are added to give the stiffness
matrix,

Table IV gives the number of primary floating -point arithmetic operations required
to generate the matrix [K] as a function of the number of numerical quadrature points u
and the number of shape functions r. The numbers given in this table are based on the
assumption that each element of [By] is a single quantity (rather than an expression in the
local coordinates) and therefore, the operation counts given are conservative, that is, less
than the actual number of arithmetic operations.

The number of floating-point arithmetic operations required to generate the element
characteristic arrays for triangular and parallelogram elements using the SYMINSE pro-
gram are given in table V. Note that very few additional operations are required for the
evaluation of the geometric stiffness, the consistent mass, and the consistent load coeffi-
cients. The trapezoidal and nontrapezoidal quadrilateral (trapezium) elements are not in-
cluded in table V because their arithmetic operation counts are more difficult to obtain.
However, the CPU times listed in table III give a measure of the additional complexity for
these cases.

As a test for the reliability of the operation count estimates, the ratios of the CPU
times expended in evaluating integrals compared with the CPU times expended in forming
the characteristic arrays as linear combinations of integrals are given in table VI. These
ratios may be compared with the comparable ratios of operation counts also given in
table VI. The ratios are not very close but agree in order of magnitude,

Figure 4 shows the ratios of the arithmetic operation counts involved in the evalua -
tion of the element stiffness array for both the symbolic manipulation and numerical quad-

rature procedures.

The element characteristic arrays computed by the SYMINSE program have been
verified by comparing them with those obtained by a program based on numerical quadra-
ture. This latter program, although not optimized for efficiency, ran much slower than
the SYMINSE program. This fact together with the preceding comparison of operation
counts strongly suggest that the symbolic integration approach presented herein holds
much promise.

POSSIBLE FURTHER IMPROVEMENTS AND EXTENSIONS

On the basis of the present study, the following remarks regarding the use of sym-
bolic integration in the development of higher order elements seem to be in order:
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Figure 4.- Comparison of number of floating-point arithmetic operations required
to evaluate integrals using numerical quadrature and symbolic integration tech-

niques.
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(1) The analytic methods discussed herein can be easily implemented without modi -
fication for friangular elements with more than ten nodes and for parallelogram elements

with more than eight nodes.

(2) A minor modification of these methods is required for trapezoidal and trapezium
(nontrapezoid quadrilateral) elements with more than eight nodes. For these elements
the I's and J's of equations (37) and (41) contain singularities when s or t equals
zero, These difficulties are eliminated by using logarithmic functions obtained by sub-
tracting off low order terms in the Taylor series expansions of T_.-(s), fl(s,t), and
Lo(s,t) defined in equations (42) and (38).

(3) A minor modification of the way in which symmetry transformations are applied
is required for quadrilateral elements with more than one bubble mode. This case is dis-

cussed in reference 9.

(4) With these modifications the implementation of trapezoidal elements with more
than eight nodes and/or with more than one bubble mode is not difficult. However, the
implementation of trapezium elements with more than eight nodes or with more than one
bubble mode would be difficult because of the complexity of the analytic expressions.

(5) For the trapezium elements a hybrid approach which combines the exact symbolic
integration with either approximate analytic integration or numerical quadrature appears
to have advantages over the purely numerical quadrature and the purely symbolic integra-
tion approaches. In the hybrid approach the A- and B-integrals are evaluated exactly by
using symbolic integration and the C-integrals are evaluated approximately by numerical
quadrature or symbolic integration. This approach would retain the major advantages re-
sulting from symbolic integration of the A- and B-integrals and eliminate the difficulties
associated with exact symbolic integration of the C-integrals.

A count of floating-point arithmetic operations suggests that even for a purely
numerical quadrature approach, the evaluation of A-, B-, and C-integrals followed by
formation of the stiffness coefficients as a linear combination of these integrals is faster
than the conventional approach discussed in the preceding section. This suggests that
symbolic integration and numerical quadrature can be readily combined in one program.

CONCLUDING REMARKS

Computerized symbolic integration and group-theoretic techniques are employed in
combination to obtain analytic expressions for the stiffness, geometric stiffness, consis-
tent mass and consistent load coefficients of composite shallow-shell structural elements.
The elements are shear flexible and have variable curvature. A stiffness (displacement)
formulation is used with the fundamental unknowns consisting of both the displacement and
rotation components of the reference surface of the shell. Both triangular and quadrilat-
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eral elements are developed. The triangular elements developed have six and ten nodes.
The quadrilateral elements have four and eight nodes and can have internal degrees of
freedom associated with displacement modes which vanish along the edges of the element.

The coefficients of the elemental matrices (stiffness, geometric stiffness, consistent
mass, and consistent load) are expressed as linear combinations of integrals (over the
element domain) whose integrands are products of shape functions and their derivatives.
The evaluation of the elemental matrices is thus divided into two separate problems -
determination of the coefficients in the linear combination and evaluation of the integrals.
The latter problem can be computationally the more time consuming and the present study
aims at reducing the computational effort involved in this task through the use of compu-
terized symbolic integration,

Based upon a comparison between the number of floating-point arithmetic operations
required in the symbolic integration and traditional numerical quadrature approaches, it
appears that the symbolic manipulation approach, as presented herein, is considerably
more efficient and holds much promise. This is especially true for the triangular, paral-
lelogram, and trapezoidal elements.

For trapezium (nontrapezoidal quadrilateral) elements, however, a hybrid approach
in which some of the integrals (the A- and B-integrals) are evaluated exactly by symbolic
manipulation and other integrals (the C-integrals) by either numerical quadrature or by
means of approximate analytic expressions appears to have advantages over a purely
numerical quadrature or a purely symbolic integration approach.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

October 3, 1975
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APPENDIX A
ELASTIC COEFFICIENTS OF LAMINATED SHELLS

Elastic Stiffnesses of Layers

(k) (k)

The nonzero stiffness coeificients c Byp and Cy383 of the kth orthotropic layer
of the shell referred to the directions of principal elasticity are given by

K) /—
c(11{1)11 = E£ )/’\(k)

K k) /(&
°§1)22 = V(Ll,{'% E'(r)/K( )

(9 _ /5K

C2222 = T

s - ol
0(113)13 = Gg(%‘
ng)zs = GSLI‘{%‘

where the subscripts L and T denote the direction of fibers and the transverse direc-
tion, respectively, the superscript k refers to the kth layer, the E's are elastic mod-
uli, the G's are shear moduli, and vy 1is the Poisson's ratio measuring the strain in
the T-direction due to a uniaxial normal stress in the L-direction

VTLEL = VLTET
X' =1 - Z/LTVTL

The stiffness coefficients cqpyp and cq3p3 satisfy the following symmetry
relationships:

CaByp = CypapB = CBayp = Cappy
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APPENDIX A

and
Cw3B3 = CR3a3 = C3apB3 = Cw33p

If the coordinates x4 are rotated, the elastic coefficients cyg,p and cg3g3
transform as components of fourth- and second-order tensors, respectively. The trans-
formation law of these coefficients is expressed as follows:

Ca'p'y'p' = Capyp laa’ 88" byt fop'
and
Ca'38'3 = ¢a3p3 Laa' {88!

where cq'gly'p and cgyrggrg  are the elastic coefficients referred to the new coordi-
nate system Xxg, and

laa' = cos Xg,Xg')

Elastic Coefficients of Shell

The equivalent elastic stiffnesses of the shell are given by

[Cozﬁwo Fagyp Daﬁyp] Z fh CSIBYD [1 X3 X%J dxg

k-1

and
NL
e ()
Ca3s3 = C 383 dx
k=1 hg_1

where NL is the total number of layers of the shell and hy and hi_j are the dis-
tances from the reference surface to the top and bottom surfaces of the kth layer, respec-
tively. The elastic compliances of the shell Agpyp, Bagyp, Gapyp, and Ag3p3 are
obtained by inversion of the matrix of the elastic stiffnesses. (See ref. 5.)
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APPENDIX A

The shell stiffnesses and compliance coefficients satisfy symmetry and transforma-
tion relations similar to those of the stiffness coefficients of individual layers.

The density parameters of the shell are given by

where p(k) is the mass density of the kth layer of the shell,

S
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APPENDIX B

FORMULAS FOR THE COEFFICIENTS IN GOVERNING EQUATIONS

FOR INDIVIDUAL ELLEMENTS

The expressions for the independent stiffness coefficients in equation (12) are given

Ky = gg(e) Caypp dyN' 3N dQ

K.} = Sﬂ(e) Capyp Kby oyN' NIN? a0

K},’%+3 = Sg(e) Fogyp oyNt 9pNI dQ

Ky} = S'Q(e) (caygp k&y Kb NINININ™ 4 Cy3p3 8N BBNj) ae
K3 43 = gﬂ(e) (Faygp Khp oyN' NINL + Coags Nt 2gNI) a0

Kq+3,8+3 = gg(e) (Dm,Bp ayN' a,N! + Cy3p3 N1N3> de

The independent nonzero geometric stiffness coefficients are given by

=i _ o) i j

The independent nonzero congistent mass coefficients are given by

ij ingd

MaB_S. () 0 Sap N'NJ d©
iy _ ini

Ma’B+3—S‘ (e) ml 5a6 N'N! d©
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ij S‘ ing
Mg3 = NN a©
33 ole) mop

L] ini
M43, 843 = gﬂ(e) mgy 355 N'N! A2

where 6,13 is the Kronecker delta on « and B8.

Finally, the consistent nodal load coefficients are given by

2 {ym
[ LM m
P3 = S‘Q(e) N™N"p 4@

In these equations the range of the lower case Latin indices is 1 -~ r where r is
the number of shape functions, the range of the Greek indices is 1,2, and a repeated index
denotes summation over the full range of the index. However, for the elements with inter-
nal degrees of freedom (SQ5 and SQ9) the indices ¢ and m in these expressions have
a range equal to the number of nodes in the element (that is, 4 for the SQ5 element and
8 for the SQ9 element). This amounts to distributing the loading on the nodes of these
elements with no loading associated with the internal degrees of freedom,
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APPENDIX C
SHAPE FUNCTIONS USED IN THE PRESENT STUDY
The shape functions used in the present study are numbered as shown in figure 2,

Four-Node Quadrilateral Elements (SQ4 and SQ5)

The shape functions for SQ4 are

nio - 5121(1 - £9)

(L+&5)( - &9)

N2 = .

o (L+&1)(1 + &)
4

e (1- &)1+ &)

4

The shape functions for SQ5 are these functions plus the additional function representing
the bubble mode.

N = (1 ) g12><1 _ 522>

Eight-Node Quadrilateral Elements (SQ8 and SQ9)

The shape functions for SQ8 are

N1 - (1-&1)(2 - £2)(-1 - &5 - &9)
4

o (e Ea)(1 v 8 - )
4

3= (L+ &)1+ &g) (-1 + &1 + £9)
4
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P Gl U G e )
4

-2 - &)
2

NO =

@)t - &)
2

N =

N7 = L - &%)+ £9)
2

o (e el - e
2

For SQ9 the additional shape function N? is
N9 = (1 - £2)(t - £5?)

Triangular Elements (ST6 and ST10)

The shape functions for ST6 are

Nl =g(2q - 1)

N2 = (285 - 1)

N3 = (1 - &g - £g)(L - 281 - 28p)
N = 4g48,

N° = dip(l - & - &y)

N6 = 4g1(1 - &1 - £9)
40



APPENDIX C

The shape functions for ST10 are

_£1(381 - 1)(381 - 2)

1
N 2
N2 - £9(3¢g - 1)(34g - 2)
B 2
N3 = (1 - &1 - £2)(2 - 381 - 3&)(1 - 3&1 - 3&g)
2
95152(351 - 1)
Nt - 2
N5 = 952(352 - 1) (1 - 51 - gz)
) 5
981 (L - 61 - £2)(2 - 341 - 3¢y)
N - 2
NT = 9§1€2(3£2 - 1)
- 2
o8 L 2ba(l - &1 - £9)(2 - 38y - 35)
) 2
go o a3 - (-4 - &y

2

N]-O = 27&1&2(]_ - ‘51 - §2>
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TABLE I. - CHARACTERISTICS OF THE STIFFNESS FINITE-ELEMENT MODELS
DEVELOPED IN THE PRESENT STUDY

‘ ' Number of internal : Total number of
 Element shape Number of nodes degrees of freedom Approximation degrees of freedom, Designation
per element s
per unknown 5r

Quadrilateral 4 None Bilinear : 20 SQ4

1 Bilinear plus bubble 25 SQ5
function

8 None Quadratic ‘ 40 SQ8

1 Quadratic plus bubble 45 SQ9
function

Triangular 6 None Quadratic 30 ST6

10 None Cubic 50 ST10

TABLE II.- THE NUMBER OF SYMBOLIC INTEGRATIONS NEEDED FOR TRIANGULAR AND QUADRILATERAL ELEMENTS

AR Gk =0~ BUY (,j=0-r k=l=-1; a=12 clls G,1=1-1 @, 8=12

Number of shape functions -
per element, r Number of numerically .
4 distinct integrals, Number of representative

Element shape Number of numerically

Number of numerically
distinct integrals

Number of representative distinct integrals
s

Number of representative

{r+a) (4 Ty integrals required r(r+ D(r+2) integrals required r(2r+1) integrals required
Triangular 6 210 o 51 336 o A36 78 6
10 1001 185 1320 121 210 13
Quadrilateral 4 70 17 120 T 36 3
5 126 34 210 24 85 5
8 495 84 720 54 136 8
\ 9 715 [ 130 990 L 83 L 171 11
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TABLE III. - CPU TIMES AND FIELD LENGTHS ON A CDC 6600 COMPUTER (USING THE RUN COMPILER

UNDER SCOPE 3.0 OPERATING SYSTEM) FOR 14 SAMPLE PROBLEMS

. . CPU time (in milliseconds) | Total CPU time Total CPU time
dEsl'eIr?;trﬁm Element shape gggﬁ;i%éﬁﬁ) to compute A-, B-, and (in milliseconds), | (in milliseconds),
esig C-integrals plate elements** shell elements
0 |
‘I SQ4 Parallelogram 33 456 8 22 36 ‘
| \ Trapezoid 12 26 40 ‘
‘ | Trapezium 18 32 46 E

SQ5 | Parallelogram 34 276 10 30 52 |

! [ Trapezoid 16 36 58 ,
‘ Trapezium 32 52 74 |
ST6 Triangle 35 270 12 40 96
SQ8 Parallelogram 40 167 18 62 212 |
Trapezoid 40 167 44 88 238 |

| Trapezium 42 662 170 214 364 ]
l SQ9 Parallelogram 42 077 20 76 260 ‘
Trapezoid 42 077 58 114 298 !I

Trapezium 44 572 212 268 452 '

L ST10 Triangle 44 257 28 98 414 l

*Initially 6000 octal words more are needed to accommodate the loader and load tables.
**Includes bending-extensional coupling.



TABLE IV.- AN ESTIMATE FOR THE NUMBER OF ARITHMETIC OPERATIONS

REQUIRED TO GENERATE THE ELEMENT STIFFNESS MATRIX USING

THE CONVENTIONAL NUMERICAL QUADRATURE PROCEDURE

D

(K] =
1

)
Il

Computation step

Product of Weig-htingrc;)efficients and
matrix [C], [C]8,8 = H, [C]8,8

Product of [62]8,8 [BQ]8,5r

T —_—
Product of [BQ]Sr,B([CQ] [BQDS,Sr
Summation over p quadrature points

Total

.
Hy [Bylg,. ¢ [Clg g [Bulg 5r

Operatiéns
Additions 7 Multiplications
0 (8)(8) 1
(8)(8)(5r)u (8)(8)(5r).

(5r)(5r + 1)(8)U-
2

(5r)(5r + 1)
"

g- ru(45r + 137)

(5r)(L;r + 1)(8)11-

(100r2 + 340r + 64)u

45



TABLE V.- NUMBER OF FLOATING-POINT OPERATIONS REQUIRED TO GENERATE
THE ELEMENT CHARACTERISTIC ARRAYS USING THE SYMINSE PROGRAM

Computation step

Evaluatlons of mtegrals

Formatlon of hnear combmatlons

for stiffness KI._'JI

Formatlon of lmear combmatmns
for arrays KIJ’ PJ, and LA)l

Sum of these three steps

Trianguisi‘ A Pa'ré_lrlelo ram -(or
Operations | clements | rectanguiar) clements
ST6 | ST10 | SQ4 SQ5 SQ8 1 SQ9
AddlthI‘lS 515| 1771 221| 3851 1 029 1 371
Multiplications | 1306 4 745! 524 860! 2669 3 609
| Additions | 613227 830| 2030|3045 14 148 |17 685
Multiplications | 8490 |38 510{2804|4204{19 592 (24 488
Addltlons 99 265 46 61 172 199
Multlphcatlons 136 366] 63| 87 237 281
Addmons 6746 |29 866 2297 345’7 15 3491{19 255
Multiplications [ 9932 /43 621]3391]5151122 498 |28 378
ruTtiprication Sl | o it

-

TABLE VI, - RATIOS OF CPU TIMES AND FLOATING-POINT ARITHMETIC
OPERATION COUNTS FOR EVALUATING INTEGRALS AS FUNCTIONS
OF FORMING THE CHARACTERISTIC ARRAYS FROM

LINEAR COMBINATIONS OF THOSE INTEGRALS

[All values refer to the SYMINSE program]

e e e - — e~

*Using data from table TII.
**Using data from table V.

46

Element designation | opg) i o addlt?&f“éo?fnts**
ParalleIEg_rarQMS*CQ; M 0 286 I ‘O 106 -
Parallelogram SQ5 .238 .113
Triangle ST6 .142 00826
Parallelogram SQ8 .0928 0719
Parallelogram SQ9 .0833 0767
Triangle ST10 .0725 .0630

-

Ratlo of

multlphcatlon counts**

0.183
.200
.151
.135
.146
.122

1.-10354

NASA-Langley, 1975
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